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Lamb’s analysis of small-amplitude, shallow-water oscillations in a rotating 
paraboloid, interpreted by him in the inconsistent context of an approximately 
plane free surface, is re-interpreted to obtain results that are valid for 

0 < w21/2g < 1 

(o = rotational speed, E = latus rectum of paraboloid); no equilibrium is possible 
for w21/2g > 1. It is shown that the frequencies of the dominant modes for the 
azimuthal wave numbers 0 (axisymmetric motion) and 1 are independent of w 
for an observer in a noii-rotating reference frame and that the frequencies of all 
other axisymmetric modes are decreased by rotation (Lamb concluded that they 
would be increased). An axisymmetric mode of zero frequency, which was over- 
looked by Lamb, also is found. 

Exact solutions to the non-linear equations of motion, which reduce to the 
aforementioned dominant modes for small amplitudes, are determined. The 
axisymmetric solution is inferred from similarity considerations and is found 
to contain all harmonics of the fundamental frequency. The finite motion of 
azimuthal wave-number 1 is a quasi-rigid displacement of the liquid and is found 
to be simple harmonic except for a second-harmonic component of the free- 
surface displacement (but the horizontal velocity at  a given point remains simple 
harmonic). 

1. Introduction 
Lamb (1932, $5  210 and 212), considering small-amplitude, shallow-water 

oscillations in both a rotating circular cylinder and a rotating paraboloid and 
proceeding from the hypothesis that the free surface could be approximated by 
a plane (in which approximation the angular velocity w enters the calculation 
only through the Coriolis acceleration), concluded that the angular frequencies 
((T) of axisymmetric oscillations are given by 

(T2 = (Ti + 4w2, (1.1) 

where G,, denotes the angular frequency of a given mode in the absence of rotation. 
We add that the hypothesis of a plane free surface leads to (1.1) for axisymmetric 
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oscillations in any surface of revolution. We also note that Lamb’s ( 5  210) 
analysis is correct for ‘uniform depth ’ (paraboloidal bottom congruent with free 
surface). 

Fultz (1962) has recently observed that (1.1) is incorrect in consequence of the 
implicit neglect of the free-surface slope in its derivation. He was led to this 
conclusion in the first instance by a series of experiments with flat-bottomed 
circular cylinders, which yielded positive values of (g2 - 4 ) / 4 w 2  that were 
appreciably less than one and decreased monotonically with each of dla and 
w2a2/gd (a  = radius and d = mean depth). Subsequently, Platzman (1962) calcu- 
lated the limiting value (for the dominant mode) 

(1.2) 

Miles (1963) has calculated (v2 - a$)/4o2 us d/a for w2a2/gd -+ 0 and obtained 
numerical results in agreement with those measured by Fultz. 

The solution of the shallow-water equations in a circular cylinder rotating at  
a non-small speed, between zero and that value at  which the paraboloidal free 
surface touches bottom, can be expressed in terms of hypergeometric functions 
(cf. Lamb, 0 212), but the determination of the natural frequencies requires the 
solution of two, simultaneous, transcendental equations. The corresponding 
problem for a paraboloidal container is much simpler, in that the solution can be 
expressed in terms of hypergeometric polynomials with an algebraic frequency 
equation. We shall show here that Lamb’s solution to the latter problem, inter- 
preted by him in the context of an approximately plane free surface, can be 
appropriately re-interpreted for the entire range of admissible w by virtue of the 
fact that the radial variation of depth remains parabolic. 

We shall find not only that (1.1) is incorrect for a paraboloid (a trivial extension 
of Fultz’s remark), but also that the frequencies of the dominant modes with 
azimuthal wave-numbers 0 (axisymmetric mode) and 1 are independent of w for 
an observer in a non-rotating reference frame. We also shall show that the 
frequencies of all other axisymmetric modes are decwased by rotation, so that 
(1.1) is wrong qualitatively, as well as quantitatively. 

[The axisymmetric, gravity-wave modes in a rotating, circular cylinder with 
a paraboloidal bottom have recently been determined by Murty (1962). His 
results include the flat-bottomed cylinder and the paraboloid as special cases; 
in particular, he obtained a result equivalent to (3.6) below. He also carried out 
experiments and confirmed the theoretical prediction that the frequency of the 
dominant, axisymmetric mode in a rotating paraboloid is independent of the 
rotational speed. We are indebted to Prof. Fultz for bringing Murty’s thesis to 
our attention.] 

That the frequencies of two particular modes are independent of w in a non- 
rotating reference frame suggests that each must have a special simplicity. In  
fact, they are special cases of two general classes of solutions t o  the non-linear, 
shallow-water equations (Ball 1962, 1963). As we shall show, the axisymmetric 
mode of finite amplitude may be inferred from a similarity solution to the non- 
linear equations and contains all harmonics of the fundamental frequency. The 
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finite-amplitude mode of azimuthal wave-number 1 is even simpler in that the 
liquid exhibits a quasi-rigid motion that is simple harmonic except for a second 
harmonic in the free-surface displacement (but the horizontal velocity a t  a 
particular point remains simple harmonic). 

2. Formulation 
We consider a paraboloid of latus rectum 1 that contains a volume of liquid 

+nld2 and rotates (together with its contents) with angular velocity w about a 
vertical axis of symmetry. The liquid would have a plane free surface and a 
maximum depth d under the action of gravity alone, but the equilibrium free 
surface under the joint action of gravity and centrifugal force? has the para- 
boloidal shape 

z = h, + 4 ( w 2 / g )  r2 ,  (2.1) 

where z and r are cylindrical polar co-ordinates with origin at the vertex of the 
container, and h, is the maximum depth. Invoking the constraint of constant 
volume, we obtain 

h., = (1 -a)& d,  (2.2) 
where a = w21/2g (0 6 a < 1). (2.3) 

The radial variation of depth then is given by 

where 

( 2 . 4 U )  

(2.5) 

(2.4b) 

is the value of r a t  the intersection of the free surface with the underlying sur- 
face of the container. These two surfaces coalesce, and are infinite in extent, 
for a = 1; no equilibrium is possible for a > 1. 

We note that the lowest frequency of shallow-water oscillations in the absence 
of rotation is given by (Lamb, 4 193) 

= 2g/l ,  

a = (+T1)2. 

so that, from (2.3), 
(2.6) 

(2.7) 

The linearized, shallow-water approximations to the continuity and Euler 

(2.8) 
equations are (Lamb, 3 209) 

rC, + (rhu), + (hv), = 0,  

u, - 2wv + gCr = 0, 

v, + 2wu + gr-lc0 = 0, 

(2.9) 
(2.10) 

where C denotes the free-surface displacement, u and v denote the radial and 
tangential components of the velocity, r and 0 denote polar co-ordinates in a 

t The effects of Coriolis acceleration and free-surface curvature in the analysis of $52 
and 3 could be separated by replacing w2/g on the right-hand side of (2.1) by the curvature 
1/R. The results would correspond to an equilibrium free surface in a non-uniform gravita- 
tional field; R < 0 would imply a convex free surface, as in large-scale oceanographic 
applications. The analysis of $52 and 3, for which dR/g = 1, refers to normal laboratory 
configurations, 
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reference frame that rotates with the container, and subscripts imply partial 
differentiation. The tangential velocity and polar angle in the non-rotating 
reference frame are v + wr and B + wt. 

Lamb's solution of (2 .4b )  and (2.8)-(2.10) yields the eigenfunctions 

Qi = Asj(r/rr)51P[s + j ,  1 - j ;  s + 1 ; (~/a)2]ei(~'+S~) 

( s = 0 , 1 , 2 ,  . . . ; j =  1 , 2  ,... ), (3.11) 

where F is a hypergeometric polynomial and the angular frequency a is deter- 
mined by 

-__ - - 2[(2j - 1) s + 2j(j - 1)l. ( a 2  - 4w2) a2 4ws 
- 

gho a 

The corresponding velocity is given by 

(2.12) 

(3.13) 

We observe that both the relative depth, h/h,, and the mode shape, qua functions 
of r/a, are independent of w .  

We emphasize that the effects of free-surface slope are implicitly incorporated 
in the solution of (2.11)-(2.13) by way of the equation of continuity. However, 
Lamb's subsequent deductions from (2.12) were made in the context of an 
approximately plane free surface and of fixed (independently of w )  h, and a and 
therefore are quite misleading. We also remark that the shallow-water approxima- 

(2.14) 
tion demands 

h,/Z = ( l -c~)*(d/ l )  < 1, 

but this does not necessarily imply d < 1. 

3. The frequency equation 

result in the form 
Substituting h, and a from (2.3) and (2.5) into (2.12), we may rewrite the 

f ( v , ~ )  = ~ ~ - [ 4 ~ ~ + ( 1 - ~ ~ ) ~ ~ , " ~ ] , - 2 ( 1 - ~ ) w a , 2  = 0, (3.1) 

where a," = ail = sa; = 2sg/l (3.2) 

a,"j = [(2j - 1) s + 2 j ( j  - l)] a;. (3.3) and 

Following Lamb ( 5  223), we designate those oscillations for which I (TI > 2w as 
modes of the first class and those for which la1 < 2w as modes of the second class. 
We may assume w > 0 without loss of generality; if w < 0 we have only to 
replace a by - a in (3.1). 

We consider first axisymmetric oscillations, for which (3.1) reduces to 

f ( # , w )  = c ~ [ c T ~ - ~ ~ o ~ - ( ~ - c x ) c T ~ ~ ]  (S = 0). (3.4) 

The root a = 0 is trivial if j + 3, but if j = 2 it leads to a non-trivial solution of 
(2.8)-(2.10), which we may write in the normalized form 
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We may identify this mode of the second class as a perturbation of the equi- 
librium motion associated with a perturbation Sw in the angular velocity. It is 
an example of that class of steady motions to which Lamb refers at  the end of 
3 207; however, his subsequent-f derivation of the partial-differential equation 
3 213 (2) and the eigenvalue equation 3 213 ( 4 )  involves division by v and thereby 
precludes the solution (3.5). 

The non-zero roots of (3.4) are given by 

g2 = ( 1 - ~ ) 0 $ j + 4 ~ ~  

= cr; j -2( j+1)( j -2)w2 (s  = 0 ; j  = 2,3,  ...) (3.6) 

and clearly yield modes of the first class. The solution implied by s = 0, j = 1 is 
trivial: col = 0;  col = const. would violate the constraint of constant volume. 

We conclude from (3.6) that the frequency of the dominant axisymmetric mode 
(j = 2 )  is unaffected by rotation, If j 3,  v2 decreases linearly with w2 from 
vij at a = 0 to (2w)Z at a = 1. Lamb’s conclusion that v2 increases with w2 follows 
from the implicit neglect of a compared with 1 in (3.4),  in which approximation 
(3.4) yields (1.1) above. 

We consider next that class of oscillations for whichj = 1,  which reduces (2.11) 
and (3.1) to 

(3.7) 

(3.8) 

(3.9) 

cSl = ~ I , ~ ( r / u ) ~  ei(u&so), 

f (c r ,w)  = ( a + 2 w ) [ v 2 - 2 w v - ( l - a ) v ~ J  = 0. 

{u, w} = ig(v- h - 1  { l ,  i} (8@). 

The root cr = - 2w renders (3.13) indeterminate, but otherwise (3.7) implies 

Substituting (3.7) and (3.9) into the equation of continuity, (2.8),  we find that 
they constitute a non-trivial solution for v = - 2 0  if and only if 

u = a, = s / (s+  8 ) ,  (3.10) 

in which case v = - 20 is a double root of (3.8). If a + al, v = - 2w yields only 
the trivial solution c, u, w = 0. (Lamb discarded the factor v + 2w in (3.8) as 
extraneous, which it is, but he did not mention the existence of a non-trivial 
solution for cr = - 2 w .  His formulation yields such a non-trivial solution for 
a = &, rather than s/(s + 8).) 

The remaining roots of (3.8) are given by 

cr = w ~ [ ( l - c C ) v , 2 + 0 2 ] ~  

=w-+[cr.;-(s- l )w2p ( s =  1,2 ,... ; j =  1). (3.11) 

These roots descend to the gravity-wave frequencies & vs at a = 0 and to 2w + 
and 0 - a t  a = 1 - . The larger frequency lies in the interval (20, co) for all a in 

t Lamb’s statement that ‘the contour-lines of the free surface must be everywhere 
parallel to the contour-lines of the bottom’ if such steady motions are to exist is somewhat 
misleading, if not inaccurate. It follows directly from the equations of motion (2.8)-(2.10) 
that a steady motion can be derived from a stream function g(32w provided that: (a)  V{ is 
chosen proportional to Vh and ( b )  the boundary conditions can be satisfied. Lamb’s 
restriction, as quoted above, evidently is sufficient but not necessary for the satisfaction 
of (a).  
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( 0 , l )  and therefore always corresponds to a mode of the first class. The smaller 
frequency lies in ( -as, - 2w) for a in (0 ,  al) and in ( - Zw, 0) for a in (a1, l),  corre- 
sponding respectively to modes of the first and second class. 

The frequencies given by (3.11) are for an observer in the rotating reference 
frame. The corresponding frequencies for an observer in the non-rotating frame 

(3.12) 
are 

in particular, 
a-w= +a, ( s = j =  1) .  (3.13) 

We conclude that the frequency of the dominant mode for s = 1, as measured in 
a non-rotating reference frame, is independent of w .  We also remark that 

a - so = - (s - 1) w & [," - ( s  - 1)  w2]4 

a-sw = 0, -2w at a = ( . y - - l ) - l  (s = 2 , 3  ,... ; j  = 1) .  (3.14) 

1 a n d j  2 2 in (3.1)-(3.3). Invoking 
Descartes' rule of signs and remarking that the coefficient of a2 is identically zero, 
we infer that the cubic equation (3.1) has three real roots of zero sum. Observing 
that 

sgnf= - 1 ,  + l ,  -1 ,  - 1 ,  1 

for 

we infer that these roots lie in the intervals ( -  asi, - 2w) ,  ( -  2w, 0 ) ,  (2w, m),  
corresponding to two modes of the first class and one of the second. 

Finally, we consider the general case s 

a = -crsj ,  -2w, 0, 2w, co, 

Expanding f about w = 0, where 

f(a, 0) = a(aZ-a$), (3.15) 

we find that the outer roots tend to the gravity-wave frequencies & asj and the 
inner root to zero according to 

and 

where 

( 3 . 1 6 ~ )  

(3.166) 

(3.17) 

Substituting (3.166) into (2.13), we find that = O(wq), from which we infer that 
a mode of the second class degenerates to an internal motion, unaccompanied by 
free-surface displacement, in the limit a! --f 0. Such motions, originally discovered 
by Kelvin (cf. Lamb, $$206,212), are sometimes referred to as inertial modes. 

Expanding f about a = 1, where 

f (a, a,) = a( a2 - 4wZ), (3.18) 

we find that the outer roots tend to k 2w and the inner root to zero according to 

I (3.19) 

1 + $j(s +j- 1) (1  -a)  

- 1 - $(j - 1)  (s + j )  (1  - a) + O( 1 - a)2. I_/ 2w - is( 1 - a)  1 
Substituting (3.19) into (3.13), we find that 5 = O[(l -a )  q] for the outer roots, 
and hence that the modes of the$& class degenerate to inertial modes in the 
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limit a -+ 1. We also remark that (2.14) is satisfied automatically in this limit, 
although not uniformly with respect to d/ l .  

Some numerical values of u/2w and ua(gh,)-* for s = 1 a n d j  = 1 and 2 are 
given by Lamb (p. 327) for several values of the parameter 

/3 = 4w2a2/gh, = Sa/(l  -a) .  (3.20) 

As we have shown-see (3.13) above-the results for s = j = 1 are independent of 
o in a non-rotating reference frame. Renormalizing Lamb’s results for s = 1, 
j = 2 and adding the limiting results for a = 0 and 1, we obtain table 1. 

a a/2u g b 1 2  

0 +a + 1  
- 0.143 0 
-a, - 1  

1- 2.889 0.977 

- 0.125 - 0.042 
- 2.764 - 0.935 

- 3 
7 1.874 0.927 

- 0.100 - 0.050 
- 1.774 - 0.877 

(i 1.183 0.814 
- 0.040 - 0.028 
- 1.143 - 0.786 

1 

- 

1 
0 

. 1  

0.755 
0 

- 0.755 

TABLE 1.  The frequrncics given by (3.1) for s = 1 , j  = 2. 

4. Non-linear similarity solution 
The striking simplicity of the foregoing results for the 02 and 11 modes 

naturally invites an investigation of the corresponding finite-amplitude motions. 
Let 

be the instantaneous depth of the liquid and u and v the radial and tangential 
components of velocity in the rotating reference frame. The non-linear, shalIow- 
water approximations to the continuity and Euler equations then are (as we 
may deduce from Lamb, 5 207) 

(4.1) h(r, 6,  t )  = h,P - (r/a)21+ &, 6,  t )  

rht +‘(rhu), + (hv), = 0, (1.2) 

( 4 . 3 a )  

vt + uv, + (v / r )  (v, + u) + 2ou = - (g / r )  5,. (4.3b) 

We consider first the finite-amplitude counterpart of the 02 mode. Setting 
s = O , j  = 2,A,, = ch,,andu = 2~~,(from(3.3))in(2.11)andtakingtherealpartof 
the result (the imaginary part yields a solution differing only in phase), we obtain 

ZLt + uu, + (v/r) (ue - v) - 2wv = - g&, 

Co2 = ~ h , ~ l - 2 ( r / a ) 2 ] ~ 0 ~ ( 2 u ~ t )  (]el < I). 14.4) 

Observing that the instantaneous free surface implied by substituting (4.4) into 
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(4.1) is also a paraboloid of revolution and that the corresponding velocities u 
and v are linear in r ,  we are led to try the similarity solution 

h = h(7) h,[l- 4 7 )  (r/cr)2] ( A  > 0), (4.5) 

(4.6) 

7 = 3r1 t. (4.7) 

{u, 2, + WY] = g1 r{p(7), v ( T ) > .  

We remark that: (4.5) comprises (for 0 < h < co) all paraboloids consistent with 
the constraints of axial symmetry and of constant volume between the free 
surface and the underlying paraboloid 2 = r211; h = 1 implies the equilibrium free 
surface of (2.4); and (2.4), (4.1) and (4.5) yield 

y = h,(A- 1 )  [l - ( A +  1) (r/a)2]. (4.8) 

We also note that (4.6) gives the velocity in a non-rotating reference frame and 
that w is arbitrary to the extent that the choice of an equilibrium free surface for 
a non-linear oscillation is arbitrary. Anticipating the existence of a periodic 
motion, we shall find i t  expedient to define w as the (temporal) mean angular 
velocity. This implies, through (4.6), that 

Substituting (4.5)-(4.8) into (4.2) and (4.3) and simplifying the resulting 

h’+ph = 0, (4.10a) 

(4.10b) 

v ’ + p  = 0. ( 4 . 1 0 ~ )  

expression for gcT with the aid of (3.2)-(2.7), we obtain 

2p‘ +p - v2 - (1 -a) h2+ 1 = 0, 

Regarding p as a function A, we may transform (4.10 a, b) to 

(4.11) 

where ( V / A ) ~  is constant by virtue of (4.lOa,c).t Integrating (4.11) and (4.10a) 
by successive quadratures, we obtain 

h,/h = vo/v = 1 + $[( 1 -a) A: +p i  + 1’: - 11 (1  - cos 7 )  +po sin7, (4.13) 

where A,, ,ao, v0 denote the initial values of A, p, v. We may choose p, = 0 without 
loss of generality, measuring t from that instant at  which u = 0. Taking the mean 
value of (4.12) and invoking (4.9), we obtain 

l’, = 013A,. (4.13) 

Finally, anticipating the subsequent reduction for small amplitudes, we introduce 
the parameter e, such that 

We then may reduce (4.13) to 
A; = ( l+€) / ( l -€) .  (4.14) 

h = a-+lJ = (1  - €’)* (1 - 6 COS 7)-l (4.15) 

t We note that v/h is the angular momentum of the motion divided by fwLa2ul and that 
the first integral of (4.11) is the total energy of the motion divided by @na2a~, where m is 
the total mass of the liquid. 
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and integrate (4.lOa) to obtain 

,u = c( 1 - E cos 7)-l sin T. (4.16) 

It is obvious that the non-linear oscillation described by (4.5)-(4.8), (4.15) and 
(4.16) is periodic with fundamental frequency 2g1 and contains all harmonics of 
2nl. The mean value of the velocity in the rotating reference frame vanishes by 
virtue of our choice of 01, but the free-surface displacement has the non-zero mean 

(4.17) value 5 = h,[ l -  (1 - ~2) -9]  (r/a)2, 

in consequence of which the mean free surface lies below the equilibrium free 
surface for r > 0. We also note that the maximum and minimum radial displace- 
ments of the surface are given by 

rmax/a = a/rmin = [(I + € ) / ( I  --€)I&. (4.18) 

The mean displacement given by (4.17) naturally has no significance for r > rmin. 
To investigate the behaviour of the foregoing solution for small amplitudes, 

we may expand (4.15) and (4.16) in powers of E and substitute the results into 
(4.6) and (4.8) to obtain 

h = 1+€cos7++E2cos27+ ...) (4.19) 

(A ") = €{sin, cos} 7 + +e2(sin, cos} 27 + . . . , 
n , r ' w r  

(4.20) 

5 = h,(-+e2(r/a)2+e[l - 2 ( r / a ) 2 ] c o s ~ + ~ ~ 2 [ 1 - 3 ( r / a ) ~ ] c o s ~ ~ +  ...}. (4.21) 

The leading terms, of O(e), in (4.20) and (4.21) evidently correspond to the 02 
mode of (4.4). 

5. Quasi-rigid solution 
We turn now to the finite-amplitude counterpart of the 11 mode. Setting 

s = j = 1, A,, = e,h,exp ( ~t is,) (we now wish to permit arbitrary phases) and 
g = w 5- vl (from (3.1 1)) in (2.1 1 )  and taking the real part of the result, we obtain 

[{F) = e,h,(r/a)cos[(O+wt) 2 (glt+S*)l. (5.1) 

The corresponding results for u and v, as given by (3.9), are 

{u, v} = - &a(o & n,) (sin, cos} [ (0  + w t )  5 (fly t + d*)], (5.2) 

where the top and bottom signs correspond with those in (5.1). The vertical 
velocity a t  the free surface is given by the linearized boundary condition 

(5.3) 

(5.4) 

zu = ct+ ( d r / g ) u  = (2r/Z) u. 

UlZ = -r-l[(ru),+vs] = 0, 

We also have, from the equation of continuity within the liquid, 

so that (5.3) gives w everywhere in the liquid (note that w/u = 2r/l, the meridian 
slope of the container). 

We remark that each of the two linearly independent solutions represented by 
(5.1)-(5.3) corresponds to a rigid-body displacement of the liquid having the 
displacements ([(+), q(*)} = +c*a(cos, T sin} (v,t + 8,) (5.5) 
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{xl, yl} = r{cos, sin} (@+ wt) .  (5.6) 

We find that the linear superposition of the two linearly independent solutions 
satisfies (4.3) but leaves a remainder of - ~ + s ~ a ~ h ~ r s i n ( 2 c r ~ t + S + + S ~ )  in (4.2). 
This implies that 

( 6 . 7 )  

together with the sum of the velocities given by (5.2), will satisfy the non-linear 
equations (4.2) and (4.3) exactly. Substituting (5.1) into (5.7), we may transform 

h = ho{l- [(x1- o2 + (Y1- 7)2  - (F + r2)1b2}, (5.8) 
the result to 

where 6 = .g+)+C(-), 7 = 7(+)+7(-), (5.9) 
___ 

and (c2 + y2) denotes the mean value of f 2  + 72. 
We may identify (5.8) as a rigid-body motion of the paraboloidal free surface, 

in which the centre executes a simple-harmonic, elliptical motion in the non- 
rotating reference frame with a frequency (ul) that is independent of rotation. 
A case of special interest is rectilinear translation, for which we choose 

to obtain 

€+ = E- = €, 8, = 8- = 0 

[ = cacos (u1t), 7 = 0. 

(5.10) 

(5.11) 

We also note that setting E- = 0 (c+ = 0) yields a clockwise (counterclockwise), 
circular translation of the centre of the paraboloid. 

It is obvious from their construction by superposition that both u and v are 
simple harmonic. As for the vertical velocity, we have 

w = -  D( h+- 7 )  = D h  -+ (2;) - U E  (yj - U ,  
Dt Dt 

(5.12) 

in agreement with (5.3). We conclude that the finite-amplitude motion departs 
from a simple harmonic oscillation only in the displacement of the free-surface. 
This displacement contains the second harmonic (see (5.7)) if and only if E+ 8- =k 0. 
The motion is strictly simple harmonic if either F+ or e- vanishes, as for the 
aforementioned circular motions. 
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